管理 Management > 產品與專案
feature picture
Ian Wu

產品經理如何學會數據分析?我分 6 階段,談數據思維與分析的基本功

2021-03-29 Ian Wu
分享
收藏
已完成
已取消

數據分析、大數據、數據導向決策這些名詞在這個時代隨處可聽到,人人都在談;這也透露出如何利用「數據」來提升競爭力是現今不可或缺的能力了,這裡的競爭力可能是幫助公司決策、營運、產品方向、行銷運營等等。

本文分享擔任產品經理時所累積的數據分析經驗包含產品數據與商業數據,分享數據分析的思維以及實務面,幫助產品決策/行動推展;不會深入探討各個分析理論與技術細節。

➜ 數據堆積如山,不知道怎麼抓重點?「數據思維養成課|從 0 到 1 練成邏輯表達力」教你洞察數據,提升決策力 ►立即學習

本篇文章分享內容:
1. 為什麼要懂的數據分析?產品經理要懂什麼?
2. 如何開始數據分析?個人數據分析思維與流程
3. 總結

為什麼要懂得數據分析?產品經理要懂什麼?

數據就好像是情報,我們把情報用在對的地方,事半功倍,情報用錯地方賠了夫人又折兵。情報有真假,透過人為操作製造出假情報,導致走到錯誤的方向;數據也是可以被操弄,例如,之前網路傳的口罩愈領愈少圖與瑞幸咖啡財報問題。前者數學概念簡單,多數人都可以掐指一算,一秒內識破;而後者,涉及數據量多,計算繁瑣,平常人如果沒有去深入研究,難以察覺異狀。

網路謠言

「數據」既然這麼重要,而產品經理(Product Manager)又是負責產品/商業成敗的角色,能培養「數據分析」的能力絕對是加分。「數據分析」範疇很廣,包含數據採集、數據清洗、數據探勘、分析結果等等;不同量級的資料,處理起來的方法也不同,所以專業數據分析師的價碼水漲船高不是沒道理。

至於產品經理要懂什麼呢?個人認為如果具備基礎統計學跟數據分析思維,與數據團隊溝通會比較順暢、明確,幫助自己做出正確的判斷。數據分析師有優秀的處理數據能力與專業方法論,但要分析的標的是什麼、場景是什麼、限制是什麼與預期產出是什麼,這些定義是需要產品經理一同梳理;另一方面,通常簡易、量級小、即時性的數據,會由產品經理自己透過工具來處理,省去跨部門的溝通成本與流程。

如何開始數據分析?

數據分析的知識範疇很廣,我將大致分為(1)確認數據需求、(2)定義與了解指標、(3)數據收集與規劃、(4)數據清洗與處理、(5)數據驗證與可視化以及最後產出(6)數據洞察與下一步行動方案/策略。擁有較多資源的公司或許會有數據分析團隊協助處理步驟(4)~(5),然而在沒有太多資源情況下,產品經理就需要自己從頭開始執行;縱然有數據團隊的專業分工,仍建議產品經理要積極培養數據分析的能力,使得與數據團隊會更有效率的合作。

產品經理的數據分析思考流程.png
延伸閱讀:Excel高手最愛用!3步驟學會超強大「樞紐分析」,資料處理再也不愁

1. 數據需求來源

為什麼要這些數據?想要做什麼?這也是一開始要回答的問題。

釐清我們是為了達成什麼目標。這個目標會在公司、產品策略下產生,進而透過數據來驗證或是找出可能存在的問題,進行優化改善。例如產品為獲取新客,採取功能上的調整,這樣的調整最終效益如何?又例如產品使用者對功能的偏好與分群狀況,如何強化產品運營等問題?軟體產品數據有幾個常用類別如下:

  • 商業、財務
  • 產品、功能
  • 行銷、運營

💡Tip:數據會告訴我們資訊,但需要什麼樣的資訊方向必須先定義好,避免瞎子摸象。

2. 定義與了解指標(Metrics)

該採用什麼指標?如何定義指標?選擇可以指引你的明燈。

有了明確目標與問題後,接著要思考什麼樣的數據指標可以用來解決這個問題或是衡量成效,以及該指標的定義是什麼。「數據資料」是維度(觀察的面向)與度量(量測的單位)所組成,並透過統計運算得出指標,指標有其代表的物理意義,了解他們是相當重要。另外需要注意該指標的限制條件/邊界條件是什麼?什麼情況下該指標是具有「有效性」。

選擇指標時,可以僅用單一個指標,也可能是多指標,端看場景與衡量項目。例如,產品新增一個功能,而該功能開啟率 90%;乍看之下,這個功能非常成功,用戶都有使用;然而如果再看卸載率同步提高 20%,這時候該功能是成功還是失敗呢?

再看另外一個例子,優化一個體驗流程,使用率單日從 10% 提高到 20%,乍看之下這個流程優化結果是好的,但如果把時間維度考慮進去,動態平衡後又如以往回到 10%,此時此刻結論是否會有不同呢?在選擇指標數量時,要謹慎思考場景相依性、時間與空間的影響,除了採用直接影響的指標也需列出間接影響的部分。下面僅列幾個 App 常見指標,更多指標可網路查詢或自行定義(通常除非商業模式或是產品是非常創新,大多數代表指標都可以在市場上找到)。

  • App 產品指標:New Install、Uninstall Rate、Retention、DAU、MAU、PV、UV、CTR 等等。
  • App 商業指標:Revenue、Paid Rate、Cost、ARPU、LTV 、ROI 等等。
  • 廣吿指標:Bid Rate、Win Rate、Show Rate、CTR、CVR、ROAS 等等。

💡Tip:
1. 透過公式了解每個參數的定義、計算方式與限制條件,避免使用錯誤指標來衡量。
2. 選擇單一指標或多指標時,需考量場景相依、時間、空間,列出直接指標與間接指標。
3. 相同指標名詞,在不同公司、產業仍可能會有其不同,使用前要確認與釐清。

3. 數據收集與路徑規劃

數據哪裡來?會不會有偏差、缺漏?思考並建立一條取經之路。

有了具體數據目標後,要如何收集數據便成為下個要思考的題目。如果這個數據項目是已經有類似收集的流程,便可以試著套用、修改或增加參數,並確保可以符合目前需求;如果沒有,就從打地基開始吧!必須從頭設計與規劃路徑。在規劃收集數據的路徑部分,大致有幾個思考點,如數據型態、觸發時間、頻次、場景流程、事件、收集對象等,以下舉幾個項目說明:

  • 數據型態:整數、浮點數、文字以及不同位元大小等。影響儲存的正確性、資料量大小與後處理方式等等。
  • 觸發時間、次數:觸發事件回傳、排程時間回傳、間隔時間與回傳次數等。例如使用者觸發事件,中途因他方網路不穩定而導致數據偶發遺失,看到的結果便是該用戶無觸發,反而給錯了方向;此時若適當增加回傳次數,可降低這部分影響。
  • 場景流程:具有前後因果或流程型的項目通常需要多個數據收集點,後續進行漏斗分析。基於這樣的情況,要去拆解場景的關鍵點是什麼?預期流出口是什麼?可以想像主流與分流的脈絡是什麼,這部分通常與項目的流程節點會有相關性,可以互相對照。

在產品小、用戶數少的情況下,無窮無盡的收集數據或許感受不到太大問題,但是當用戶量增長時,連帶數據量倍增,後續數據處理上會遇到的問題也就增多了,同時也加速資源的浪費(金錢),且回頭修改流程也會面臨工程龐大的困境,更可能造成新、舊資料匹配不上的情況。公司或許有自己的系統,也或許是用第三方系統,不論是哪個,如何收集到有效的數據並考量客戶端與服務端資源都是必須謹慎規劃與思考,建議不要過於匆忙。

💡Tip:以終為始,考量數據樣本、取得方式、延展性並列出應用場景,需要實務經驗累積與工程團隊討論。

延伸閱讀:3 成業績,來自疫情期做的產品!KKday 的產品祕訣:對「怪怪的」數據追根究柢

4.資料清洗與數據處理

藏污納垢,不掃除,結果也是髒的。

數據好比是源源不斷的水流,在飲用河水之前必須將其淨化,透過過濾、滅菌、煮沸等過程,確保水是純淨無害,進行數據分析之前,也必須將原始資料經過「清洗」,後續才能得到正確的資訊。常見的基本髒污情況有重複值、極大極小值、缺值、亂數、空白字串等等;去除雜訊,留下需要的有效數據量是分析前的第一步,通常會考慮下面幾個面向:

  • 數據是否重複或缺漏
  • 數據是否具有一致性
  • 數據是否存在衝突
  • 數據是否真實有效

數據乾淨了,接下來是「處理」,處理的方式取決與要看什麼樣的資訊,可能有匯總、平均、趨勢、變異、估計等等,因此需要些統計學觀念。例如「平均值」是常見計算方式之一,但「平均值」什麼時候可以使用就關聯到母群體的大小與物理意義,並不是任何一組數據簡單取平均,就可以代表什麼含義。例如,在薪資貧富不均的地區取「平均薪資」一數字來代表這區域的薪資水準,代表性就會非常薄弱且失真,也可能帶來錯誤的決策方向(例如補貼、津貼額度等);這部分會建議學習統計學中幾個常見項目的概念,掌握其應用場景、物理意義與限制條件。

  • 集中趨勢:平均數、中位數、眾數。
  • 離散程度:標準差、變異數、四分位數、四分差、百分位數等。
  • 假設檢定:抽樣、信賴區間、卡方檢驗、T檢定。
  • 回歸分析:線性回歸、非線性回歸 。

在計算方面,最簡單就是透過強大的 Excel,進階一點就是用統計專業軟體如SPSS、SAS、Statistica 或是其他第三方工具來協助。以目前擔任產品經理且需經手的數據,Excel 已經足以應付九成以上的使用情境了。

💡Tip:資訊分析前,透過清洗確保原始資料乾淨,透過正確的統計學概念,了解其物理意義,而選擇適當的處理方法。

5. 數據驗證與可視化展示

資訊對不對?該如何展示資訊? 雙重驗證與圖表使用。

處理完的數據(data)即產出資訊(information),在進行分析之前,記得先進行檢驗資訊是否合理,以及是否有符合限制條件。這步驟會偏向以邏輯合理性、物理意義、統計標準、以及過往數據經驗來做確認,例如可以從維度、量值大小搭配經驗進行評估。

舉一個生活的例子,依照台北市物價、學生收入、學生常態用餐習慣等,平均學生一天三餐費用合計可能大概是 250~300 元左右,然而基於你收集的資料並經過計算,結果是 2,000 元,這時候可能就需要回頭檢視原始數據以及計算過程是否有問題。另一種情形,使用 A/B testing 進行測驗時,要去探討可信度與樣本數是否足夠、不偏頗具有統計意義,這類型就有明確的統計標準與方法論。

前面數據清洗與處理若沒出現什麼問題,常態到這裡出現問題的機率就會極低;但是總是會有失誤的時刻,這步就是在做雙重驗證,在花費腦力進行分析之前,先將前置作業完善,也可以確保分析後的輸出結果是有憑有據。

可視化(視覺化)展示部分可以區分成文字表格類型與圖表兩大方向,展示目的是在於能夠清楚傳遞正確資訊給閱讀者,做出正確策略與結論。

  • 文字表格:數值、比例(%)
    使用百分比時表示時要確認基數大小是否適合,例如「花費行銷費用 1 萬,共提高客單數成長 50%」,乍看起來這筆預算花費結果是非常有力,下一步分析時可能就會做出價碼投入等等決策,但如果知道基數(原客單數)是 10 人時,結論還會是加碼投入嗎?比例可以看出影響程度,但是必須搭配基數來看,避免過度高估或是低估。

  • 圖表:折線圖、直條圖、橫條圖、瀑布圖、長條圖、漏斗圖、圓形圖等等
    圖表類型非常多,觀察連續時間趨勢的折線圖、類別差異的柱狀圖、群體分佈的圓餅圖等等,了解每個圖表的使用場景,而不是靠感覺或是美感去選擇圖表。

💡Tip:以邏輯合理性、物理意義、統計標準、以及過往數據經驗來做檢驗,並了解圖表應用場景,傳達正確的意涵。

6. 數據洞察與行動方案

資訊在手,然後呢?希望無窮。找出關鍵點,做出行動/策略方案。

回到一開始,數據需求來自於策略;利用數據來驗證策略或是從數據中開展新策略。我們可以透過比較差異、關聯性、趨勢分佈等方式,找到特徵點與關係佐證;這部分有時候會一次到位,但更多時候必須反覆推敲、深挖以及再次回到數據處理階段,透過不同處理的統計方式,而獲得需要的資訊。在進行資訊分析時,可以透過以下四點進行:

  • 設立比較基準點。
  • 盤點外部因素、環境因子。
  • 統合資訊進行分析。
  • 產出下一步行動/策略。

step 1 設立基準點

藉由定義的指標來評估項目的狀況,何謂效果?效益如何?要如何回答這些呢?好與壞是相對,而不是絕對,因此我們需要一個比較基準點。
- 時間基準:
-環比(本次統計段與相連的上次統計段之間的比較)
-同比(即同期相比,表示某個特定統計段今年與去年之間的比較)常用的有WoW、MoM、QoQ、YoY等數據比較方式。

  • 業界基準:來自於理論值與經驗值,如區域類別 App 的黏滯力、LT、CTR、CVR 等。
  • 內部基準:公司內同類產品組合或產品本身的歷史數據,可透過交叉比對來進行分析。

step 2 盤點內外部因子

除了基準點外,也需要盤點會影響項目的外部因素,列出這些資訊,如行銷活動、節慶、法規變動、競爭對手造勢等,分析數據時要確保對照組與實驗組的參數組成,或許很難做到單一變因與控制環境因子影響,但盡可能的降低或排除其比例,得到的結果也可以走在正確的方向。

step 3 資訊分析方法

得到許多資訊,卻遲遲不知道如何下手分析或是找不到一個可以依據的邏輯方法?我們可以透過選擇適合的分析框架幫助我們找出資訊關鍵點與切入點,常見的框架方法列舉如下:

  • 矩陣分析法
  • 漏斗分析法
  • 畫像分群分類
  • 趨勢維度
  • 行為軌跡
  • 留存分析
  • A/B測試

step 4 行動方案/策略

分析完成後會得洞察(insight),也就是足以回答起初設定的目標的答案;若只是停留在「答案」而沒有後續動作,則對我們未來一點幫助也沒有,我們必須產出下一步行動方案/策略。這部分範疇小至產品單一事件,如功能優化,大至公司跨部門協作與公司運營,然而重點是在於我們要藉由數據分析知道預期與實際的「差異」,再次擬定改善方案或是開展新方向;隨之而來會是依照新目標再次進入新的數據分析過程,產生所謂的數據策略迭代,數據驅動的飛輪。

💡Tip:設立基準點、盤點內外資訊,選擇適當的分析框架,邏輯思考出下一步行動/策略。

總結:如何靠數據驅動策略?

如何靠數據驅動策略.png

透過「數據分析」輔助我們盡量以「科學客觀」而非「感覺」、「直覺」的方式做出適合的決策、行動以及驗證假設。在進行分析之前要確保「輸入」是正確的,也就是數據收集與處理這部分,隨後的「輸出」即合理可信。以產品經理而言,具備基礎統計學與產業知識等硬實力,對於進行數據分析會強而有力,同時培養數據思考與邏輯能力,構建自己的見解,有助於策略/行動的開展。另外,現今火紅的 AI、機器學習領域則是著重在「預測」,協助企業決策,這部分也是值得產品經理探討與學習的部分。

Make good use of data, and do the better actions and strategies in the future.

(本文經授權轉載自Ian Wu的Medium,原文請點此。)

相關文章
feature picture
NMEA

從台流轉型到跨界共創,2025亞洲新媒體高峰會以「RESILIENCE:韌性 · 突圍」驅動產業續航

2025-10-20 經理人 X NMEA
分享
收藏
已完成
已取消

全球影視娛樂正處在結構翻轉的臨界點。從串流平台的競合與權力再分配,到生成式AI引爆的創作革命,再到觀眾注意力被碎片化的內容浪潮瓜分,市場規則幾乎在一年之內重寫。

在這樣的動盪中,「如何永續成長」成為所有內容產業的共同焦慮。台灣擁有豐沛的創作能量,卻在規模化與國際化的路上,始終面臨結構性瓶頸。為了回應時代考驗,NMEA(新媒體暨影視音發展協會)以「RESILIENCE:韌性 · 突圍」為題,將於11月24日至25日舉行2025亞洲新媒體高峰會,邀請超過五十位國內外產業領袖對話,從組織、內容、技術與商業模式出發,探討如何讓台灣影視娛樂在不確定中,創造屬於自己的續航動能。

韌性,從衝擊中找到成長的可能

「Resilience」一詞原本源自工程學,指材料在受壓後能回彈的能力。NMEA理事長李芃君指出,當這個詞被用於產業時,它所代表的已不只是「抗壓」,而是「擁抱變化與永續成長」的能力——在巨變中快速重組關鍵資源、甚至藉由創新找到新的突破。

她觀察,全球產業變動的背後,主要受到三股力道的衝擊:地緣政治的風險、科技典範的轉移,以及氣候與疫情等帶來的自然挑戰。這些因素同樣影響著台灣文化內容產業。

以台灣一家全球背光模組大廠為例。近年隨著國際電子品牌紛紛在筆電與平板產品導入OLED顯示技術,傳統背光模組市場面臨挑戰;該企業在察覺趨勢轉向後,選擇主動調整策略,透過併購前沿技術快速推出新產品,切入車用、醫療與AR/VR顯示等新領域。李芃君指出,這樣的轉向即是韌性的展現——在技術更迭的浪潮中重新定位自己,讓企業從被動防守,轉為開創下一波成長曲線。

「這種思維放回影視娛樂也一樣。當市場被新技術和新平台顛覆,產業若仍困於單一市場、單一資金、單一合作關係,就難以應對下一次衝擊。」她強調,建立韌性不能停留在抽象的口號,必須要有具體行動,而關鍵就在「多角化」。

多角化的市場讓故事能走出台灣、觸及不同文化的觀眾;多角化的技術與人才,讓製作不再受限於傳統框架;而多角化的資金與夥伴結構,則能減少對補助與單一委製案的依賴,形成正向循環的產業體質。諸如日本《鬼滅之刃》透過IP延伸創造跨世代效應,或泰國在政府策略支持與國際平台Netflix合作,讓在地內容走向全球,都是多角化的案例。

高峰會四大主軸,挖掘韌性的潛力

「政策當然重要,但最終能否長出韌性,關鍵仍在產業本身的自覺與行動力。」李芃君表示,第七屆亞洲新媒體高峰會以「台流轉型、跨界共創、影視創新、商模躍進」四大主軸為核心,期望讓韌性不再停留於口號,而能轉化為具體實踐。不只是思考「如何生存」,更要推動產業主動探索「如何成長」。

在「台流轉型」議題中,論壇將從亞洲娛樂的整體格局出發,思考台灣內容如何在國際市場中建立辨識度與合作機制。面對串流平台競爭與區域內容崛起,產業要重新定義「台流」的價值,從單點創作走向跨國布局。

「跨界共創」則從電競、音樂、體育到AI應用,剖析影視娛樂如何走向一個多層次的體驗場域。透過多個實際案例,探討不同產業之間的協作經驗,助攻內容突破原有框架,創造新的商業能量。

「影視創新」主軸聚焦於新技術與內容形式的融合。如:短劇風潮、現象級作品及AI生成式內容等,正改變影視產業的創作邏輯。論壇將聚焦技術如何成為創意夥伴,推動人才與內容的再進化。

最後,「商模躍進」則回應內容永續與變現挑戰。當觀眾行為與平台策略不斷重組,內容不再只是作品,也是可延伸、可轉化的商業資產。論壇將引導產業思考,如何讓內容價值在不同階段持續發酵,打造可長可久的生態循環。

李芃君強調,高峰會的價值,在於讓這些不同維度的討論彼此交會;唯有當創作、技術與資本願意對話,產業的韌性才能真正落地。「我們希望產業能從危機思維轉向成長思維,在對話與合作中,激盪出新的想像與行動。」

韌性,新媒體暨影視音產業必備的DNA

自2017年成立以來,NMEA持續扮演政策倡議與產業整合的推動者。每一屆高峰會也都對應時代命題,映照產業進化軌跡。從2023年「EMPOWERING」的全面賦能、2024年「CONSOLIDATION」的整合共榮,到今年的「RESILIENCE」發揮韌性、尋求突圍,李芃君形容,這是一條從能力啟動、資源整合到體質調整的路徑,引領台灣影視娛樂邁向國際舞台。

NMEA
NMEA理監事集結產業代表,共思壯大台灣內容產業之道。
NMEA

她指出,高峰會結束後,NMEA也將以工作坊與共創計畫延續對話熱度,讓產業交流落地為實際行動。協會也積極拓展跨域合作,從企業交流、IP授權推動到媒體合作,串聯更多產業能量。

值得注意的是,自2022年起,高峰會同步啟動線上直播,三年累計已吸引超過20萬名觀眾參與,單屆觀看更突破8.1萬人次。李芃君認為,這不僅是數據表現,更代表台灣影視產業逐漸建立國際話語權。當產業以開放與創新的態度前行,才能在全球文化浪潮中,站上屬於台灣的舞台。

[本文由經理人整合行銷部與NMEA共同製作]

會員專區

使用會員功能前,請先登入

  • 台灣首款對話式 AI 職場教練,一次提升領導力
  • 會員專享每日運勢、名人金句抽籤
  • 收藏文章、追蹤作者,享受個人化學習頁面
  • 定向學習!20 大關鍵字,開放自選、訂閱
  • 解鎖下載專區!10+ 會員專刊一次載
追蹤我們